If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16=2w^2
We move all terms to the left:
16-(2w^2)=0
a = -2; b = 0; c = +16;
Δ = b2-4ac
Δ = 02-4·(-2)·16
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*-2}=\frac{0-8\sqrt{2}}{-4} =-\frac{8\sqrt{2}}{-4} =-\frac{2\sqrt{2}}{-1} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*-2}=\frac{0+8\sqrt{2}}{-4} =\frac{8\sqrt{2}}{-4} =\frac{2\sqrt{2}}{-1} $
| 5n^2–3n=2 | | 5/6x-4=-3 | | 29^2=20^2+x^2 | | 3=3.5x-1.75 | | -4(4y+-5)=68 | | 2x+7÷5x+2=2x-1÷5x-4 | | 0.2x+0.33=4(0.8x+5) | | 3^3x+2=1/83 | | x-46=-4 | | 2/3w=-240 | | 7z-(6-z)=10z+10 | | 2x+5+6x=-32 | | r/2–8=16 | | Y=14x+78 | | |3x+6|=-7 | | -9x-3.2=3x | | 3m+6.5=4.6m-7.74 | | -3y+12=24 | | 10−3x=≤40 | | 10−3x≤=40 | | 0.15(x+40)-0.08(x-20)=11.1 | | 3t-17=5t+7 | | n/15=11/15 | | −2x−20=x+4 | | 4=3x-528 | | -87=216+g | | x3+5=2(x-5) | | p/19=18 | | 6x-8=9x-16 | | 51+y=-59 | | x/9=(-4) | | p/9=63 |